随着BIG DATA大数据概念逐渐升温,如何搭建一个能够采集海量数据的架构体系摆在大家眼前。如何能够做到所见即所得的无阻拦式采集、如何快速把不规则页面结构化并存储、如何满足越来越多的数据采集还要在有限时间内采集。这篇文章结合我们自身项目经验谈一下。

我们来看一下作为人是怎么获取网页数据的呢?

1、打开浏览器,输入网址url访问页面内容。
2、复制页面内容的标题、作者、内容。
3、存储到文本文件或者excel。

从技术角度来说整个过程主要为 网络访问、扣取结构化数据、存储。我们看一下用java程序如何来实现这一过程。

import java.io.IOException;
import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.HttpException;
import org.apache.commons.httpclient.HttpStatus;
import org.apache.commons.httpclient.methods.GetMethod;
import org.apache.commons.lang.StringUtils;

public class HttpCrawler {
       public static void main(String[] args) {

            String content = null ;
             try {
                  HttpClient httpClient = new HttpClient();
                   //1、网络请求
                  GetMethod method = new GetMethod("http://www.baidu.com" );
                   int statusCode = httpClient.executeMethod(method);
                   if (statusCode == HttpStatus. SC_OK) {
                        content = method.getResponseBodyAsString();
                         //结构化扣取
                        String title = StringUtils.substringBetween(content, "<title>" , "</title>" );
                         //存储
                        System. out .println(title);
                  }

            } catch (HttpException e) {
                  e.printStackTrace();
            } catch (IOException e) {
                  e.printStackTrace();
            } finally {
            }
      }
}

通过这个例子,我们看到通过httpclient获取数据,通过字符串操作扣取标题内容,然后通过system.out输出内容。大家是不是感觉做一个爬虫也还是蛮简单呢。这是一个基本的入门例子,我们再详细介绍怎么一步一步构建一个分布式的适用于海量数据采集的爬虫框架。

整个框架应该包含以下部分,资源管理、反监控管理、抓取管理、监控管理。看一下整个框架的架构图:

社会化海量数据抓取组件图

  • 资源管理指网站分类体系、网站、网站访问url等基本资源的管理维护;
  • 反监控管理指被访问网站(特别是社会化媒体)会禁止爬虫访问,怎么让他们不能监控到我们的访问时爬虫软件,这就是反监控机制了;

  • 一个好的采集框架,不管我们的目标数据在哪儿,只要用户能够看到都应该能采集到。所见即所得的无阻拦式采集,无论是否需要登录的数据都能够顺利采集。现在大部分社交网站都需要登录,为了应对登录的网站要有模拟用户登录的爬虫系统,才能正常获取数据。不过社会化网站都希望自己形成一个闭环,不愿意把数据放到站外,这种系统也不会像新闻等内容那么开放的让人获取。这些社会化网站大部分会采取一些限制防止机器人爬虫系统爬取数据,一般一个账号爬取不了多久就会被检测出来被禁止访问了。那是不是我们就不能爬取这些网站的数据呢?肯定不是这样的,只要社会化网站不关闭网页访问,正常人能够访问的数据,我们也能访问。说到底就是模拟人的正常行为操作,专业一点叫“反监控”。

    那一般网站会有什么限制呢?

    一定时间内单IP访问次数,没有哪个人会在一段持续时间内过快访问,除非是随意的点着玩,持续时间也不会太长。可以采用大量不规则代理IP来模拟。

    一定时间内单账号访问次数,这个同上,正常人不会这么操作。可以采用大量行为正常的账号,行为正常就是普通人怎么在社交网站上操作,如果一个人一天24小时都在访问一个数据接口那就有可能是机器人了。

    如果能把账号和IP的访问策略控制好了,基本可以解决这个问题了。当然对方网站也会有运维会调整策略,说到底这是一个战争,躲在电脑屏幕后的敌我双方,爬虫必须要能感知到对方的反监控策略进行了调整,通知管理员及时处理。未来比较理想应该是通过机器学习算法自动完成策略调整,保证抓取不间断。

  • 抓取管理指通过url,结合资源、反监控抓取数据并存储;我们现在大部分爬虫系统,很多都需要自己设定正则表达式,或者使用htmlparser、jsoup等软件来硬编码解决结构化抓取的问题。不过大家在做爬虫也会发现,如果爬取一个网站就去开发一个类,在规模小的时候还可以接受,如果需要抓取的网站成千上万,那我们不是要开发成百上千的类。为此我们开发了一个通用的抓取类,可以通过参数驱动内部逻辑调度。比如我们在参数里指定抓取新浪微博,抓取机器就会调度新浪微博网页扣取规则抓取节点数据,调用存储规则存储数据,不管什么类型最后都调用同一个类来处理。对于我们用户只需要设置抓取规则,相应的后续处理就交给抓取平台了。

  • 整个抓取使用了 xpath、正则表达式、消息中间件、多线程调度框架(参考)。xpath 是一种结构化网页元素选择器,支持列表和单节点数据获取,他的好处可以支持规整网页数据抓取。我们使用的是google插件 XPath Helper,这个玩意可以支持在网页点击元素生成xpath,就省去了自己去查找xpath的功夫,也便于未来做到所点即所得的功能。正则表达式补充xpath抓取不到的数据,还可以过滤一些特殊字符。消息中间件,起到抓取任务中间转发的目的,避免抓取和各个需求方耦合。比如各个业务系统都可能抓取数据,只需要向消息中间件发送一个抓取指令,抓取平台抓完了会返回一条消息给消息中间件,业务系统在从消息中间件收到消息反馈,整个抓取完成。多线程调度框架之前提到过,我们的抓取平台不可能在同一时刻只抓一个消息的任务;也不可能无限制抓取,这样资源会耗尽,导致恶性循环。这就需要使用多线程调度框架来调度多线程任务并行抓取,并且任务的数量,保证资源的消耗正常。

    不管怎么模拟总还是会有异常的,这就需要有个异常处理模块,有些网站访问一段时间需要输入验证码,如果不处理后续永远返回不了正确数据。我们需要有机制能够处理像验证码这类异常,简单就是有验证码了人为去输入,高级一些可以破解验证码识别算法实现自动输入验证码的目的。

    扩展一下 :所见即所得我们是不是真的做到?规则配置也是个重复的大任务?重复网页如何不抓取?

    1、有些网站利用js生成网页内容,直接查看源代码是一堆js。 可以使用mozilla、webkit等可以解析浏览器的工具包解析js、ajax,不过速度会有点慢。
    2、网页里有一些css隐藏的文字。使用工具包把css隐藏文字去掉。
    3、图片flash信息。 如果是图片中文字识别,这个比较好处理,能够使用ocr识别文字就行,如果是flash目前只能存储整个url。
    4、一个网页有多个网页结构。如果只有一套抓取规则肯定不行的,需要多个规则配合抓取。
    5、html不完整,不完整就不能按照正常模式去扣取。这个时候用xpath肯定解析不了,我们可以先用htmlcleaner清洗网页后再解析。
    6、 如果网站多起来,规则配置这个工作量也会非常大。如何帮助系统快速生成规则呢?首先可以配置规则可以通过可视化配置,比如用户在看到的网页想对它抓取数据,只需要拉开插件点击需要的地方,规则就自动生成好了。另在量比较大的时候可视化还是不够的,可以先将类型相同的网站归类,再通过抓取的一些内容聚类,可以统计学、可视化抓取把内容扣取出几个版本给用户去纠正,最后确认的规则就是新网站的规则。这些算法后续再讲。这块再补充一下(多谢zicjin建议)

    背景:如果我们需要抓取的网站很多,那如果靠可视化配置需要耗费大量的人力,这是个成本。并且这个交给不懂html的业务去配置准确性值得考量,所以最后还是需要技术做很多事情。那我们能否通过技术手段可以帮助生成规则减少人力成本,或者帮助不懂技术的业务准确的把数据扣取下来并大量复制。

    方案:先对网站分类,比如分为新闻、论坛、视频等,这一类网站的网页结构是类似的。在业务打开需要扣取的还没有录入我们规则库的网页时,他先设定这个页面的分类(当然这个也可以机器预先判断,他们来选择,这一步必须要人判断下),有了分类后,我们会通过“统计学、可视化判断”识别这一分类的字段规则,但是这个是机器识别的规则,可能不准确,机器识别完后,还需要人在判断一下。判断完成后,最后形成规则才是新网站的规则

    7、对付重复的网页,如果重复抓取会浪费资源,如果不抓需要一个海量的去重判断缓存。判断抓不抓,抓了后存不存,并且这个缓存需要快速读写。常见的做法有bloomfilter、相似度聚合、分类海明距离判断。

  • 监控管理指不管什么系统都可能出问题,如果对方服务器宕机、网页改版、更换地址等我们需要第一时间知道,这时监控系统就起到出现了问题及时发现并通知联系人。

目前这样的框架搭建起来基本可以解决大量的抓取需求了。通过界面可以管理资源、反监控规则、网页扣取规则、消息中间件状态、数据监控图表,并且可以通过后台调整资源分配并能动态更新保证抓取不断电。不过如果一个任务的处理特别大,可能需要抓取24个小时或者几天。比如我们要抓取一条微博的转发,这个转发是30w,那如果每页线性去抓取耗时肯定是非常慢了,如果能把这30w拆分很多小任务,那我们的并行计算能力就会提高很多。不得不提的就是把大型的抓取任务hadoop化,废话不说直接上图:

社会化海量数据抓取组件图

今天先写到这里,后续再介绍下 日均千万大型采集项目实战。

原创文章,转载请注明: 转载自LANCEYAN.COM

本文链接地址: 社会化海量数据采集爬虫框架搭建

57 thoughts on “社会化海量数据采集爬虫框架搭建

  1. “另在量比较大的时候可视化还是不够的,可以先将类型相同的网站归类,再通过抓取的一些内容聚类,可以统计学、可视化抓取把内容扣取出几个版本给用户去纠正,最后确认的规则就是新网站的规则。”

    写的不知道什么莫名其妙的东西。语法思路理清楚了再下笔啊。

  2. @zicjin ,不好意思,当时确实有点偷懒没写完全哈。完整是这样的:

    背景:如果我们需要抓取的网站很多,那如果靠可视化配置需要耗费大量的人力,这是个成本。并且这个交给不懂html的业务去配置准确性值得考量,所以最后还是需要技术做很多事情。那我们能否通过技术手段可以帮助生成规则减少人力成本,或者帮助不懂技术的业务准确的把数据扣取下来并大量复制。
    方案:先对网站分类,比如分为新闻、论坛、视频等,这一类网站的网页结构是类似的。在业务打开需要扣取的还没有录入我们规则库的网页时,他先设定这个页面的分类(当然这个也可以机器预先判断,他们来选择,这一步必须要人判断下),有了分类后,我们会通过“统计学、可视化判断”识别这一分类的字段规则,但是这个是机器识别的规则,可能不准确,机器识别完后,还需要人在判断一下。判断完成后,最后形成规则才是新网站的规则,不知道这样说理解了吗。

  3. Pingback: 实战低成本服务器搭建千万级数据采集系统 | 严澜(lanceyan)的博客 - 技术分享 框架交流 大数据处理 架构搭建 机器人

  4. Pingback: 低成本服务器搭建千万级数据采集系统 - 博客 - 伯乐在线

  5. 你好,我对网页数据采集也很有兴趣,虽然第一次看到你的文章,但是很多方面的做法竟然都很相似。想请教下两方面的问题:1. 对于动态网页(比如论坛)的数据采集,如何对于回复进行同步?2. 数据采集以后,如何商业化(盈利)?

  6. 人类智慧是无穷的:)1、动态网页如果不考虑性能可以使用webkit、gecko渲染后再进行采集,考虑性能还是单独扣取ajax,不知道你说的同步是指?2、大数据时代可以对数据进行挖掘分析,比如政府、商家会监控是否有舆论信息,还记得315吗,小小的cookie数据有如此大的威力

  7. Pingback: 海量数据采集爬虫框架搭建 - HBLSOFT TEAM

  8. Pingback: 实战低成本服务器搭建千万级数据采集系统 – 码农的时间

  9. Pingback: 社会化海量数据采集爬虫框架搭建 | 闻之山博客

  10. Pingback: 实战低成本服务器搭建千万级数据采集系统 | 李立辉的技术与网络营销博客

  11. 博主,你好,请教一下 “使用工具包把css隐藏文字去掉” 这个是怎么做到的?能指点一下吗。

  12. 这个框架能开源吗,还有个问题,如果是要全量数据,用HADOOP这样的,M/R对数据的结构化要求比较高,结构化你是怎么做的

  13. Pingback: 技术向:基于java社会化海量数据采集爬虫框架搭建(附代码) | 36大数据

  14. 通过智能程序将半结构化网页自动转变成结构化数据的工作我目前在做,有一个demo出来,欢迎交流。结构化转换靠手动配xpath或者csspath是搞不定的,一个方面是配置太多,不是人工能胜任的,另一个方面是网站布局本身在不断变化。目前我综合考虑了语义理解、代码特征和视觉特征来进行结构化,目标有能力自动结构化整个Web,至少要能自动结构化富数据的Web。

  15. 对于网络爬虫,我目前做了一个系统,同上述架构差不多(当然网络爬虫基本都是大同小异),不同的是,我把nutch改了改,使得nutch每次生成抓取任务队列后,由一批客户端来认领任务,也就是目标url,这个客户端基于phantomjs改造,可以运行在家用pc上,每次抓取相当于一个真人打开了一个firefox来访问。我希望数月内推出一项爬虫即服务的服务,欢迎交流

  16. 楼主,您好,看了您的微博,我想请问下您在文中说的“开发一个通用的抓取类,可以通过参数驱动内部逻辑调度”这个方案有没有什么想法呢?自己在项目中想实践的时候,发现设置规则怎么感觉比依葫芦画瓢更复杂呢!希望您不吝赐教。

  17. 是的,不同的网站非常复杂,有html、html5、ajax、图片、css、rest的URL等等,要实现规则配置和参数驱动不能满足100%的需求,只能说80%的通用需求是没问题的。而通过参数驱动的调用逻辑,这个就比较复杂了,简单来说你可以试试jms

  18. Pingback: 技术向:基于java社会化海量数据采集爬虫框架搭建(附代码) | 内容采集

  19. Pingback: 数据采集策略 » 陆沉博客

  20. 楼主,现我有一个需求是这样子的,目前目标网站需要登陆才能获取信息,但是目标站点只给了几个可用用户,我们只能使用者几个有限用户登录获取内容,登陆后后是根据cookie 中 session id 识别用户的,而且每次访问页面session id 都不一样 ,如果是大并发登陆爬取目标内容如何做到每次请求的身份识别的 session id 都是有效的?(并发过程中后一个访问session id 导致前一个访问 session id 失效)

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> 

required

注意: 评论者允许使用'@user空格'的方式将自己的评论通知另外评论者。例如, ABC是本文的评论者之一,则使用'@ABC '(不包括单引号)将会自动将您的评论发送给ABC。使用'@all ',将会将评论发送给之前所有其它评论者。请务必注意user必须和评论者名相匹配(大小写一致)。